CHAPTER

TinyBlog: Data Persitency using
Voyage and Mongo

1.1 Previous Week Solution

You can load the solution of the previous week using the following snippet:

Gofer new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadWeek3Correction

Then, test it with:
[TBTeapotWebApp start

Pay attention that you should not have your own web application running
on the same port. If this is the case stop it or run the solution on a different
port. You should also create posts in the blog to be able to see data.

[TBBlog reset ; createDemoPosts

1.2 Saving in an External Database with Voyage

Until now we used model objects stored in memory and it works well because
saving the Pharo image also save these objects. Nevertheless, it would be bet-
ter to save these model data into an external database. Voyage provides a
mean to store objects into a Mongo database. In fact Voyage is a framework
that offers the same API to document-based databases such as Mongo or Un-

1.3

TinyBlog: Data Persitency using Voyage and Mongo

QLite. It is what we will discover in this exercise. First, we will use Voyage
and its capacity to simulate an external database. This is really useful during
development. Then, we will install a Mongo database and access it through
Voyage. This second step will have a really little impact on our code.

Configure Voyage to Save TBBlog Objects

By defining the class method isVoyageRoot, we declare that objects of this
class must be saved into the database as root objects.

TBBlog class >> isVoyageRoot

"Indicates that instances of this class are top level document in
noSQL databases"
true

A

We should establish connection to real database or work in memory. We will
start to work in memory by using this expression:

[VOMemoryRepository new enableSingleton.

The enableSingleton message indicates to Voyage that we will use only one
database. This will free us to specify the database each time.

We create and initialize the database in memory in a class-side method named
initializeVoyageOnMemoryDB.

TBBlog class >> initializeVoyageOnMemoryDB
VOMemoryRepository new enableSingleton

We do not need to save the database into an instance variable because we
will have only one database accessible through Voyage configured in single-
ton mode.

We now define the reset and initialize class methods to ensure that the
databse is initialized when we load TinyBlog’s code.

The reset method re-initializes the database.

TBBlog class >> reset
self initializeVoyageOnMemoryDB

TBBlog class >> initialize
self reset

The class-side current method is more tricky. Before using Voyage, we im-
plemented a simple singleton pattern. However, it does not work anymore
because imagine that we saved our blog and then the server stop by accident.
When we would reload a new version of the code, it would re-initializes the
connection and create a new instance. It would then be possible to end up
with a different instance than the saved one.

1.4

1.5

1.4 Saving a Blog

So we change the implementation of the current method to make a database
request and retrieve saved objects. Since we only save one blog object, it only
consists in doing: self selectOne: [:each | true]orself selec-
tAll anyOne. If the database contains no instance, we create a new one and
save it.
TBBlog class >> current
~ self selectAll
ifNotEmpty: [:x | x anyOne]
ifEmpty: [self new save]

We can also remove the class instance variable named uniqueInstance that
we previously used to store our singleton object.

Saving a Blog

Each time we modify a blog object, we must propagate changes into the database.

For example, we modify the writeBlogPost: method to save the blog when
we add a new post.
TBBlog >> writeBlogPost: aPost

"Write the blog post in database"

self allBlogPosts add: aPost.
self save

We also save the blog when removing (remove method) a post from a blog.

TBBlog >> removeAllPosts
posts := OrderedCollection new.
self save

Querying the Database

The database is currently in memory and we can access to the blog object us-
ing the current class-side method of the TBBlog class. It is enough to show
the API of Voyage since it will be the same to access a real Mongo database.

You can create posts:
[TBBlog createDemoPosts.
You can count the number of blog saved. count is part of the Voyage API. In

this example, we get the result 1 because the blog is implemented as a Single-
ton.

TBBlog count
>1

Similarly, you can retrieve all saved root objects of one kind.

1.6

TinyBlog: Data Persitency using Voyage and Mongo

[TBBlog selectAll

You can also remove one root objet.

[TBBlog current remove

You can discover more about the Voyage API by looking at:
+ the Class class,

« the VORepository class which is the root of the hierachy of all databases
either in memory or external.

Those queries will be more relevant when there will more objects but they
would be similar.

If we would save Posts

This section should not be implemented. It is only described as an example.
More information about Voyage can be found in the Entreprise Pharo book
http://books.pharo.org. We want to illustrate that declaring a class as Voyage
root has an influence on how an instance of this class is saved and reloaded
since it is not part anymore of the object that refers to it. In the database this
object is not nested anymore inside the document representing the object
referencing it but it is saved as an autonomous document.

We could define that a post can be saved independently from a blog. How-
ever, if we represent post comments, we would not define them as root ob-
jects too because manipulating a comment outside of its context (a post) does
not make sense.

When a post is not declared as voyage root, you are not sure that this post
is unique in the sense that you have only one object representing it when
loaded from the base. Indeed, when loading (and this can be different from
the situation before the saving) a post is nested inside the document repre-
senting the blog and as such it cannot be shared between two blog instances
therefore it may be duplicated.

Post as Root = Uniqueness

Declaring posts as root objects would imply that saved blogs have a reference
to a TBPost object. Otherwise, a post is included into its blog. When posts
are not root objects, they are not guaranteed to be unique after loading from
the database. Indeed, after loading each blog object will have its own posts
objects even if some posts were shared before saving. Shared objects before
saving will be duplicated for each root objects after loading.

If you want to share posts and make them unique between multiple blogs,
therefore, the TBPost class must be declared as a root in the database. In this

http://books.pharo.org

1.7

1.8

1.7 Test with an External Mongo Database

case, posts are saved as autonomous entities and instances of TBBlog will
reference posts entities instead of embedding them. The consequence is that
a post is unique and can be shared via reference from a blog. To achieve this,
we would define the following methods:

TBPost class >> isVoyageRoot
"Indicates that instances of this class are top level document in
noSQL databases”
* true
During the addition of a post to a blog, it would be important to save both
the blog and the new post.

[TBBlog >> writeBlogPost: aPost
"Write the blog post in database"
posts add: aPost.
aPost save.
self save

[TBBlog >> removeAllPosts
posts do: [:each | each remove].
posts := OrderedCollection new.
self save.

In the removeAllPosts method, we first remove all posts, then update the
collection and finally save the blog.

Test with an External Mongo Database

By using Voyage, we can easily save our model objects into a Mongo database.
This section explains how to proceed and the few modifications to make into
our code.

Installing Mongo

Regardless of your operating system (Linux, Mac OSX ou Windows), you can
install a local Mongo server on your machine. This is useful to test your ap-
plication without requiring an internet connection. We will not describe
here the process to install Mongo on various systems, please read the Mongo
documentation.

Note The running Mongo server must not use authentication because
the new SCRAM mechanism used by Mongo 3.0 is currently not supported
by Voyage.

Once you successfully installed Mongo locally, you can access it from Pharo.
You should create a database named 'tinyblog’. It will be used to save our
objects.

TinyBlog: Data Persitency using Voyage and Mongo

1.9 Connecting a Local Server

We define the method named initializelLocalhostMongoDB to establish
the connection to a Mongo server running locally (localhost) on the default
Mongo port.

[TBBlog class >> initializelLocalhostMongoDB

| repository |

repository := VOMongoRepository database: 'tinyblog'.
repository enableSingleton.

Now we make sure that resetting the class will set a connection to the database.

ETBBlog class >> reset
self initializelLocalhostMongoDB

Now you can use your application. For example add new posts. They will be
saved directly in the Mongo database.

1.10 In case of trouble

If you need to re-initalize completely an external database, you can use the
dropDatabase method.

(VOMongoRepository
host: 'localhost'
database: 'tinyblog') dropDatabase

1.11 Points of Attention: Changing TBBlog Definition

When you use an external Mongo database instead of a memory one, each
time you add new root objects or modify the definition of some root objects,
it is important to reset the cache maintained by Voyage. It can be done us-
ing:

[VORepository current reset

1.12 Conclusion

Voyage proposes a nice API to manage transparently storage of objects either
into memory or in document database. Your application can now be saved
into a database and we are now ready for its web user interface.

	TinyBlog: Data Persitency using Voyage and Mongo
	Previous Week Solution
	Saving in an External Database with Voyage
	Configure Voyage to Save TBBlog Objects
	Saving a Blog
	Querying the Database
	If we would save Posts
	Post as Root = Uniqueness

	Test with an External Mongo Database
	Installing Mongo
	Connecting a Local Server
	In case of trouble
	Points of Attention: Changing TBBlog Definition
	Conclusion

