
CHA P T E R 1
TinyBlog: Extending and testing

the model

1.1 Previous week solution

You can load the solution of the previous week using the following snippet:

Gofer new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadWeek1Correction

Then, you can browse the code of the TBPost class. With this solution, you
can complete the code of your TinyBlog application if needed before contin-
uing.

1.2 Save your code

Even if you can save the Pharo image which contains all the objects of the
system (and as such the classes you wrote), this section explains how Pharoers
usually save their code as packages on dedicated servers with the Pharo
versioning system named Monticello. Smalltalkhub http://smalltalkhub.com

is one of these servers to host saved Pharo code. You can also use SS3 at
http://ss3.gemstone.com.

Create a repository

• Create an account on http://smalltalkhub.com/.

1

http://smalltalkhub.com
http://ss3.gemstone.com
http://smalltalkhub.com/

TinyBlog: Extending and testing the model

• Log yourself on the web site.

• Create a project (it may happen that you get a connection problem be-
cause the web site is still in beta, in such a case retry with a different
web browser. If the problems persist use http://ss3.gemstone.com).

– Name it the way you want. For example ”TinyBlog”

Save your package

• In Pharo, open the Monticello Browser available in the main menu.

• Add a repository (of type either SmalltalkHub or HTTP for SS3)

• Select the repository and the menu item ’Add to package...’ to add this
repository to the package TinyBlog.

• Select your package and press the ’Save’ button.

• Enter a log describing the changes you did.

The code of your application is now in your SmalltalkHub repository. You
should now be able to load your code in a new Pharo image. Nevertheless, if
you use a stock Pharo image, you must also load Seaside and other libraries
and frameworks.

In this project, we encourage you to always use the image we gave with the
preloaded packages and that you can find at http://mooc.pharo.org. This will
let you load new code without having to take care about package dependen-
cies.

1.3 About dependencies

Good practices in Pharo developments are to clearly specify the dependen-
cies of used packages. The idea is to ensure that the building of a project is
fully reproducible. It is important because once we have such reproducible
process we can take advantage about automatic build servers such as Jenkins
or Travis.

To express dependencies between projects and packages within a project
Pharo offers special classes called Configurations. Such configurations ex-
press the architecture (main repository, dependencies to other projects,
structure of the projects) as well as versionned packages.

In the context of the TinyBlog project, we do not got any further on this.
Note that a full chapter on dependency expression is available in the Deep
In Pharo book.

2

http://ss3.gemstone.com
http://mooc.pharo.org

1.4 TBBlog class

1.4 TBBlog class

A TBBlog contains posts. We will now develop this TBBlog class and its unit
tests.

Object subclass: #TBBlog
instanceVariableNames: 'posts'
classVariableNames: ''
package: 'TinyBlog'

We initialize the posts to hold an empty collection.

TBBlog >> initialize
super initialize.
posts := OrderedCollection new.

1.5 Only one blog object

In the rest of this project, we assume that we will manage only one blog.
Later, you may add the possibility to manage multiple blogs such as one per
user of the TinyBlog application. Currently, we use a Singleton design pat-
tern on the TBBlog class.

Since all the management of a singleton is a class behavior, we define such
methods at the class level.

TBBlog class
instanceVariableNames: 'uniqueInstance'

TBBlog class >> reset
uniqueInstance := nil

TBBlog class >> current
"answer the instance of the TBRepository"
^ uniqueInstance ifNil: [uniqueInstance := self new]

TBBlog class >> initialize
self reset

1.6 Testing the Model

We now adopt a Test Driven Development approach i.e., we will write a unit
test first and then develop the business functionality until the test is green.
We will repeat this process for each functionality of the model.

We create unit tests in the TBBlogTest class that belongs to the TinyBlog-
Tests tag. A tag is just a label to sort classes inside a package (See menu item
’Add Tag...’). We use a tag because using two packages will make this project
more complex. However, while implementing a real application, it is recom-
mended to have a separate package for the tests.

3

TinyBlog: Extending and testing the model

TestCase subclass: #TBBlogTest
instanceVariableNames: 'blog post first'
classVariableNames: ''
category: 'TinyBlog-Tests'

Before each test execution, the setUpmethod initializes the context of tests.
For example, it erases the blog content, adds one post and creates another
temporary post that is not saved.

TBBlogTest >> setUp
blog := TBBlog current.
blog removeAllPosts.

first := TBPost title: 'A title' text: 'A text' category: 'First
Category'.

blog writeBlogPost: first.

post := (TBPost title: 'Another title' text: 'Another text'
category: 'Second Category') beVisible

As you may notice, we test different configurations. Posts do not belong to
the same category, one is visible and the other is not visible.

At the end of each test, the tearDownmethod is executed and resets the blog.

TBBlogTest >> tearDown
TBBlog reset

Here we see the limits of using a Singleton. Indeed, if you deploy a blog and
then execute the tests, you will lose all posts that have been created because
we reset the Blog singleton.

We will now develop tests first and then implement all functionalities to
make them green.

First test

The first test adds a post in the blog and verifies that this post is effectivly
added.

TBBlogTest >> testAddBlogPost
blog writeBlogPost: post.
self assert: blog size equals: 2

If you try to execute it, you will notice that this test is not green because we
did not define the methods writeBlogPost:, removeAllPosts and size.
Let’s add them:

TBBlog >> removeAllPosts
posts := OrderedCollection new

TBBlog >> writeBlogPost: aPost
"Write the blog post in database"

4

1.7 Other functionalities

posts add: aPost

TBBlog >> size
^ posts size

The previous test should now pass (i.e. be green). We should also add tests to
cover all functionalities that we introduced.

Test the number of blog posts

TBBlogTest >> testSize
self assert: blog size equals: 1

Remove all posts

TBBlogTest >> testRemoveAllBlogPosts
blog removeAllPosts.
self assert: blog size equals: 0

1.7 Other functionalities

We now develop new functionalities as methods in the ’action’ protocol of
the TBBlog. While doing that, we regularly ensure that tests pass.

Retrieve all posts (visible and invisible)

TBBlogTest >> testAllBlogPosts
blog writeBlogPost: post.
self assert: blog allBlogPosts size equals: 2

TBBlog >> allBlogPosts
^ posts

Retrieve visible posts

TBBlogTest >> testAllVisibleBlogPosts
blog writeBlogPost: post.
self assert: blog allVisibleBlogPosts size equals: 1

TBBlog >> allVisibleBlogPosts
^ posts select: [:p | p isVisible]

Retrieve all posts of one category

TBBlogTest >> testAllBlogPostsFromCategory
self assert: (blog allBlogPostsFromCategory: 'First Category')
size equals: 1

5

TinyBlog: Extending and testing the model

TBBlog >> allBlogPostsFromCategory: aCategory
^ posts select: [:p | p category = aCategory]

Retrieve all visible posts of one category

TBBlogTest >> testAllVisibleBlogPostsFromCategory
blog writeBlogPost: post.
self assert: (blog allVisibleBlogPostsFromCategory: 'First
Category') size equals: 0.

self assert: (blog allVisibleBlogPostsFromCategory: 'Second
Category') size equals: 1

TBBlog >> allVisibleBlogPostsFromCategory: aCategory
^ posts select: [:p | p category = aCategory and: [p isVisible
]]

Check unclassified posts

TBBlogTest >> testUnclassifiedBlogPosts
self assert: (blog allBlogPosts select: [:p | p isUnclassified
]) size equals: 0

Retrieve all categories

TBBlogTest >> testAllCategories
blog writeBlogPost: post.
self assert: blog allCategories size equals: 2

TBBlog >> allCategories
^ (self allBlogPosts collect: [:p | p category]) asSet

1.8 Possible extensions

Many extensions can be made such as: retrieve the list of categories that
contains at least one visible post, delete a category and all posts that it con-
tains, rename a category, move a post from one category to another, make
(in)visible one category and all its content, etc. We encourage you to develop
some of them.

To help you testing the application, you can add the following method that
creates multiple posts.

TBBlog class >> createDemoPosts
"TBBlog createDemoPosts"
self current

writeBlogPost: ((TBPost title: 'Welcome in TinyBlog' text:
'TinyBlog is a small blog engine made with Pharo.' category:
'TinyBlog') visible: true);

6

1.9 Conclusion

writeBlogPost: ((TBPost title: 'Report Pharo Sprint' text:
'Friday, June 12 there was a Pharo sprint / Moose dojo. It was a
nice event with more than 15 motivated sprinters. With the help
of candies, cakes and chocolate, huge work has been done'
category: 'Pharo') visible: true);
writeBlogPost: ((TBPost title: 'Brick on top of Bloc -

Preview' text: 'We are happy to announce the first preview
version of Brick, a new widget set created from scratch on top
of Bloc. Brick is being developed primarily by Alex Syrel
(together with Alain Plantec, Andrei Chis and myself), and the
work is sponsored by ESUG.
Brick is part of the Glamorous Toolkit effort and will provide

the basis for the new versions of the development tools.'
category: 'Pharo') visible: true);
writeBlogPost: ((TBPost title: 'The sad story of unclassified

blog posts' text: 'So sad that I can read this.') visible: true);
writeBlogPost: ((TBPost title: 'Working with Pharo on the

Raspberry Pi' text: 'Hardware is getting cheaper and many new
small devices like the famous Raspberry Pi provide new
computation power that was one once only available on regular
desktop computers.' category: 'Pharo') visible: true)

If you inspect the result of the following snippet, you will see that the cur-
rent blog contains 5 posts:

TBBlog createDemoPosts ; current

1.9 Conclusion

You get now the full model of TinyBlog as well as some tests. You are now
ready to implement more advanced functionality such as the database stor-
age or a first HTTP server. Do not forget to save your code.

7

	TinyBlog: Extending and testing the model
	Previous week solution
	Save your code
	Create a repository
	Save your package

	About dependencies
	TBBlog class
	Only one blog object
	Testing the Model
	First test
	Test the number of blog posts
	Remove all posts

	Other functionalities
	Retrieve all posts (visible and invisible)
	Retrieve visible posts
	Retrieve all posts of one category
	Retrieve all visible posts of one category
	Check unclassified posts
	Retrieve all categories

	Possible extensions
	Conclusion

