
CHA P T E R 1
Crafting a Simple Embedded DSL

with Pharo

In this tutorial we develop a simple Domain Specific Language (DSL) for rolling
dice. Players of games such as Dungeon and Dragons are familiar with the
DSL we implement. An example of such DSL is 2 D20 + 1 D6. This example
means that we should roll two 20-faces dice and one time a 6 faces die. This
tutorial shows how we can (1) simply reuse traditional operator such as +, (2)
develop an embedded DSL and (3) use class extensions (aka open classes).

1.1 Getting Started

Using the code browser (click on the background to open the World menu
and select System Browser), define a package named Dice (contextual menu,
Add package).

Defining the Class Die

In this package, define a class Die with an instance variable faces (contex-
tual menu, Add class).

Your code here

Add an initialize protocol, and define a method initialize that simply
sets the default number of faces to 6. Save this method (ctrl s)

Your code here

1

Crafting a Simple Embedded DSL with Pharo

Creating a Test

It is always empowering to verify that the code we write is always working
as we defined it. For this purpose we create a unit test. So we define the class
DieTest as a subclass of TestCase.

TestCase subclass: #DieTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

We add a new test testInitializeIsOk to make sure we can create a new
dice.

DieTest >> testInitializeIsOk
self shouldnt: [Die new] raise: Error

When this method is saved, you can click on the gray icon in front of the
method name in the methods pane to execute the test. The icon should be-
come green.

1.2 Rolling a Die

To roll a die we use the method atRandom from Number. This method ran-
domly chooses a number between one and the receiver. For example 10
atRandom draws a number between 1 and 10. Now, define the rollmethod
of the class Die class so that it returns a random number between 1 and the
number of faces.

Your code here

Now we can create a new instance of Die, send it the message roll, and get
a result. Open a workspace (World menu, Workspace). Write Die new in-
spect and execute the expression (ctrl d). You should get an inspector like
the one shown in Figure 1.1. With it you can interact with the die by writing
expressions in the bottom pane. In this pane, type self roll and print the
result (ctrl p). You should get a random number.

Creating Another Test

We define a test that verifies that rolling a new created dice (with 6 faces
by default) only returns values comprised between 1 and 6. This is what the
following test method is actually specifying.

DieTest >> testRolling
| d |
d := Die new.
1000 timesRepeat: [self assert: (d roll between: 1 and: 6)]

Execute the test to make sure it runs fine.

2

1.3 Instance Creation Interface

Figure 1.1 Inspecting and interacting with a Die.

1.3 Instance Creation Interface

Now, we would like to get a simpler way to create Die instances. For example
we want to create a 20-faces dice as follows: Die faces: 20. Let us define a
test for it. When you save this method, you might get a warning message say-
ing that faces: is an unknown method name (aka., selector). Just confirm
the name to validate.

DieTest >> testCreationIsOk
self shouldnt: [Die faces: 20] raise: Error

Execute the test and you should get an error message because the class Die
does not have a method faces:. The message faces: is sent to the class Die
and not to an instance of this class. Such methods are called class methods
or class-side methods; this is equivalent to static methods in Java. To add
such a method to a class from the code browser, you have to tick the class
checkbox.

Another way to create this method is to do it right from the debugger that
pops up when a method does not exist. Just click the Create button in the
debugger, select the Die class, and the instance creation protocol. The
method first creates an instance, then sends it the message faces:, and re-
turns the instance. You can implement the method right in the debugger.

Die class >> your code here

To implement this method, you will have to send the message new to the
class: self is the current class when implementing a class method.

Note If your implementation of the method uses a temporary vari-
able, you may want to simplify it by using the cascade operator ; and the
yourselfmessage. Look at the implementation of Object >> yourself
and its senders (contextual menu, Senders of) to get examples on how to
do this.

3

Crafting a Simple Embedded DSL with Pharo

This method can not yet be executed because you first have to implement
the instance-side method faces: (the setter for the variable) that configure
a new die with a number of faces passed as an argument. In Java, you would
not have to do that because constructors can access instance variables. In
Pharo, a class method only knows about the class variables not the instance
variables. You can keep on using the debugger to do that or you can go back
to the code browser.

Your code here

Now, all your tests should pass and this is good moment to save your code
(World menu, Save).

So even if the class Die could implement more behavior, we are ready to im-
plement a dice handle.

1.4 First Specification of a Dice Handle

Let us define a new class DiceHandle that represents a dice handle.

Here is the API that we would like to offer for now. We create a new instance
of the handle then add some dice to it.

DiceHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself

Testing a Dice Handle

Of course we define a test for this new class. We define the class DiceHan-
dleTest as follow.

TestCase subclass: #DiceHandleTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

We define a new test method as follows.

DiceHandleTest >> testCreationAdding
| handle |
handle := DiceHandle new.
handle addDie: (Die faces: 6);
handle addDie: (Die faces: 10).
self assert: handle diceNumber equals: 2.

When you save the method, the code browser will offer to create the class
and may warn you that addDice and diceNumber are unknown method
names.

4

1.4 First Specification of a Dice Handle

Figure 1.2 Inspecting a dice handle

With another test, we can make sure we can add two times a similar dice.

DiceHandleTest >> testAddingTwiceTheSameDice
| handle |
handle := DiceHandle new.
handle addDie: (Die faces: 6);
self assert: handle diceNumber equals: 1.
handle addDie: (Die faces: 6).
self assert: handle diceNumber equals: 2.

Defining the DiceHandle class

The DiceHandle class defines one instance variable named dice to hold a
collection of dice. Add this variable to the class now.

When an instance is initialized, the instance variable dicemust contain an
empty OrderedCollection. Implement the corresponding initialize
method.

Your code here

Then we define a simple method (addDie:) to add a dice to the list of dice of
the handle. You can do that from the code browser or from a debugger after
having run a failing unit test.

Your code here

Now you can execute the code snippet and inspect it (ctrl i):

DiceHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself

You should get an inspector as shown in Figure 1.2.

5

Crafting a Simple Embedded DSL with Pharo

Figure 1.3 Die details.

Finally we should add the method diceNumber to the DiceHandle class to
get the number of dice of the handle. The method returns the size of the
dice collection.

Your code here

Now your tests should pass and this is good moment to save your code.

1.5 Improving Programmer Experience

When you open an inspector on a dice handle (such as the one in Figure 1.2)
you cannot see the details of the dices that compose the dice handle. Click on
the dice instance variable and you only get a list of "a Die" without further
information as you can see in Figure 1.2.

Enhance the printOn: method of the Die class to provide more information:
simply add the number of faces surrounded by parenthesis to make the re-
sult look like the one in Figure 1.4.

Note You may want to have a look at all the implementors of printOn:
(contextual menu of the printOn: method, Implementors of) to get
examples.

Your code here

Now in your inspector you can see the number of faces a dice has as shown
by Figure 1.3 and it is now easier to check the dice contained inside a handle
(see Figure 1.4).

1.6 Rolling a Dice Handle

Now we can define the rolling of a dice handle by simply summing the dice
rolls. Implement the rollmethod of the DiceHandle class. This method

6

1.7 Role Playing Syntax

Figure 1.4 Dice Handle with more information.

must collect the results of rolling each dice of the handle and sum them.

Note You may want to have a look at the method sum in the class Col-
lection.

Your code here

We can now send the message roll to a dice handle.

handle := DiceHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself.

handle roll

1.7 Role Playing Syntax

We are ready to offer a syntax following practice of role playing game, i.e.,
using 2 D20 to create a handle of two 20-faces dice. For this purpose we use
class extensions: we define methods in the class Integer. We want these
methods to only be available when the package Dice is loaded.

First let us specify what we would like to obtain by writing a new test in the
class DiceHandleTest. Remember to always take any opportunity to write
tests. When we execute 2 D20 we should get a new handle composed of two
dice and can verify that. This is what the method testSimpleHandle is do-
ing.

DiceHandleTest >> testSimpleHandle
self assert: 2 D20 diceNumber equals: 2.

Verify that the test is not passing! It is much more satisfactory to get a test
running when it was not working before. Now define the method D20 with a
protocol name *Dice. The * (star) prefixing the protocol name indicates that
the protocol belongs to another package. You can define this method either

7

Crafting a Simple Embedded DSL with Pharo

from the debugger resulting from the execution of the failed test or in the
code browser.

The method D20 simply creates a new dice handle, adds the correct number
of dice to this handle, and returns the handle.

Your code here

Your test should pass and this is probably a good moment to save your work.

We could do the same for different face numbers: 4, 6 and 10. But we should
avoid duplicating logic and code. We first introduce a new method D: in the
Integer class and, based on it, we define all the others.

Your code here

The D20method should now look like:

Integer >> D20
^ self D: 20

We have a compact form to create dice and we are ready for the last part: the
addition of handles.

Adding Handles

Now we can simply support the addition of handles. Let us write a test first.

DiceHandleTest >> testSumming
| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber equals: 5.

We define a +method on the DiceHandle class. In other languages this is
often not possible or is based on operator overloading. In Pharo + is just a
message as any other. Therefore we can define the +method on the classes
we want.

What is the semantics of adding two handles? Should we modify the receiver
of the expression or create a new handle? In this tutorial we choose the func-
tional style and decide that a new handle should be created. As a result, the
method + first creates a new handle then adds to it to the dice of the receiver
and the ones of the handle passed as argument. Finally, +must return the
newly created handle. To access the dice of the dice handle passed as a pa-
rameter, you will have to add a dedicated accessor.

Your code here

Now we can execute (2 D20 + 1 D6) roll and start playing games, of
course.

8

1.8 Conclusion

1.8 Conclusion

This tutorial illustrates how to create a small DSL based on the definition
of some domain classes (here Die and DiceHandle). We used class exten-
sion (on Integer) to simplify the instanciation of these classes. This tutorial
shows that in Pharo we can use standard operators to express natural mod-
els.

9

	Crafting a Simple Embedded DSL with Pharo
	Getting Started
	Defining the Class Die
	Creating a Test

	Rolling a Die
	Creating Another Test

	Instance Creation Interface
	First Specification of a Dice Handle
	Testing a Dice Handle
	Defining the DiceHandle class

	Improving Programmer Experience
	Rolling a Dice Handle
	Role Playing Syntax
	Adding Handles

	Conclusion

