
CHA P T E R 1
Crafting a Simple Embedded DSL

with Pharo

In this chapter we will develop a simple domain specific language (DSL) for
rolling dice. Players of games such as Dungeon and Dragons are familiar with
the DSL we will implement. An example of such DSL is 2 D20 + 1 D6 which
means that we should roll two 20-faces dice and one 6 faces die. This tutorial
shows how we can (1) simply reuse traditional operator such as +, (2) develop
an embedded DSL and (3) use class extensions (aka open classes).

1.1 Getting started

Using the code browser, define a package named Dice or any name your like.

Defining the class Die

Object subclass: #Die
instanceVariableNames: 'faces'
classVariableNames: ''
package: 'Dice'

In the initialization protocol, define the method initialize as follows.
It simply sets the default number of faces to 6.

Die >> initialize
super initialize.
faces := 6

Do not hesitate to add a class comment.

1

Crafting a Simple Embedded DSL with Pharo

Figure 1.1 Inspecting and interacting with a die.

Creating a test

It is always empowering to verify that the code we write is always working as
we defining it. For this purpose we will create a unit test. Remember unit
testing was promoted by K. Beck first in Smalltalk the ancestor of Pharo.
Nowadays this is a common practice but this is always useful to remember
our roots!

So we define the class DieTest as a subclass of TestCase.

TestCase subclass: #DieTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

DieTest >> testInitializeIsOk
self shouldnt: [Die new] raise: Error

1.2 Rolling a die

To roll a die we will use the method from Number atRandom which draws
randomly a number between one and the receiver. For example 10 atRan-
dom draws number between 1 to 10. Therefore we define the method roll as
follows.

Die >> roll
^ faces atRandom

Now we can create an instance Die new and send it the message roll and
get a result. Do Die new inspect and then type in the bottom pane self
roll. You should get an inspector like the one shown in Figure 1.1. With it
you can interact with a die by writing expression in the bottom pane.

2

1.3 Instance creation interface

Creating another test

We will define a test that verifies that rolling a new created dice with a de-
fault 6 faces only returns value comprised between 1 and 6. This is what the
following test method is actually specifying.

DieTest >> testRolling

| d |
d := Die new.
10 timesRepeat: [self assert: (d roll between: 1 and: 6)]

Note that often it is better to define the test even before the code it tests.
Why? Because you can think about the API of your objects and a scenario
that illustrate their correct behavior. It helps you to program your solution.

1.3 Instance creation interface

We would like to get a simpler way to create Dice. For example we want to
create a 20-faces die as follows: Dice faces: 20. Let us define a test for it.
DieTest >> testCreationIsOk

self shouldnt: [Die faces: 20] raise: Error

We define the class method faces: as follows. It creates an instance then
send the message faces: to it and returns the instance.

Die class >> faces: aNumber

| instance |
instance := self new.
instance faces: aNumber.
^ instance

This method is strictly equivalent to the one below. The trick is that your-
self is a simple method defined on Object class. yourself returns the re-
ceiver of a message and the use of ; sends the message to the receiver of the
previous message (here faces:), therefore yourself is sent to the object re-
sulting from the execution of the expression self new (which returns a new
instance of the class Dice).

Die class >> faces: aNumber

^ self new faces: aNumber; yourself

If you execute it will not work since we did not create yet the method faces:
this is now the time to define it.

Die >> faces: aNumber

3

Crafting a Simple Embedded DSL with Pharo

faces := aNumber

Now your tests should run.

So even if the class Die could implement more behavior, we are ready to im-
plement a dice handle.

1.4 First specification of a dice handle

Let us define a new class DiceHandle that represents a dice handle. Here is
the API that we would like to offer for now. We create a new instance of the
handle then add some dice to it.

DiceHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself

Of course we will define a test for this new class. We define the class Dice-
HandleTest as follow.

TestCase subclass: #DiceHandleTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

Testing a Dice Handle

We define a new test method as follows.

DiceHandleTest >> testCreationAdding

| handle |
handle := DiceHandle new

addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself.

self assert: handle diceNumber = 2.

In fact we can do it better and add a new test method that verifies that we
can even add two dice having the same number of faces.

DiceHandleTest >> testAddingTwiceTheSameDice

| handle |
handle := DiceHandle new.
handle addDie: (Die faces: 6).
self assert: handle diceNumber = 1.
handle addDie: (Die faces: 6).
self assert: handle diceNumber = 2.

4

1.4 First specification of a dice handle

Figure 1.2 Inspecting a DiceHandle.

Defining the DiceHandle class

This class defines one instance variable to hold dice it contains.

Object subclass: #DiceHandle
instanceVariableNames: 'dice'
classVariableNames: ''
package: 'Dice'

We simply initialize it so that its instance variable dice contains an Or-
deredCollection.
DiceHandle >> initialize
super initialize.
dice := OrderedCollection new.

Then we define a simple method to add a die to the list of dice of the handle.

DiceHandle >> addDie: aDie
dice add: aDie

Now you can execute the code snippet and inspect it. You should get an in-
spector as shown in Figure 1.2

DiceHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself

Finally we should add the method diceNumber to the DiceHandle class to be
able to get the number of dice of the handle. We just return the size of the
dice collection.

DiceHandle >> diceNumber

^ dice size

5

Crafting a Simple Embedded DSL with Pharo

Figure 1.3 Die details

Now your tests should run and this is good moment to save and publish your
code.

1.5 Improving programmer experience

Now when you open an inspector you cannot see well the dice that compose
the dice handle. Click on the dice instance variable and you will only get a
list of a Dice without further information.

DiceHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself

So we will enhance the printOn: method of the Die class to provide more
information. Here we simply add the number of faces surrounded by paren-
thesis.

Die >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' (', faces printString, ')'

Now in your inspector you can see effectively the number of faces a dice
handle has as shown by Figure 1.3 and it is now easier to check the dice con-
tained inside a handle (See Figure 1.4).

1.6 Rolling a dice handle

Now we can define the rolling of a handle of dice by simply summing the dice
rolls.

6

1.7 Role playing syntax

Figure 1.4 Dice Handle with more information

DiceHandle >> roll

| res |
res := 0.
dice do: [:each | res := res + each roll].
^ res

Now we can send the message roll to a dice handle.

handle := DiceHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself.

handle roll

1.7 Role playing syntax

Now we are ready to offer a syntax following practice of role playing game,
i.e., using 2 D20 to create a handle of two 20 faces dice. For this purpose we
will define class extensions: we will define methods in the class Integer but
these methods will be only available when the package Dice will be loaded.

But first let us specify what we would like to obtain by writing a new test in
the class DiceHandleTest. Remember to always take any opportunity to
write tests. When we execute 2 D20 we should get a new handle composed of

7

Crafting a Simple Embedded DSL with Pharo

two dice and can verify that. This is what the method testSimpleHandle is
doing.

DiceHandleTest >> testSimpleHandle

self assert: 2 D20 diceNumber = 2.

Verify that the test is not working! It is much more satisfactory to get a test
running when it was not working before. Now define the method D20 with a
category name that is ’*Dice’ (if you named your package Dice). This method
simply creates a new dice handle, add the correct number of dice to this han-
dle and return it.

Integer >> D20

| handle |
handle := DiceHandle new.
self timesRepeat: [handle addDie: (Die faces: 20)].
^ handle

Now you test should pass and this is probably a good moment to save your
work either by publishing your package to SmalltalkHub and to save your
image.

Now we could do the same for the default dice with different faces number:
4, 6, 10, and 20. But we should avoid duplicating logic and code. So first we
will introduce a new method D: and based on it we will define all the others

Integer >> D: anInteger

| handle |
handle := DiceHandle new.
self timesRepeat: [handle addDie: (Die faces: anInteger)].
^ handle

Integer >> D4

^ self D: 4

Integer >> D6

^ self D: 6

Integer >> D10

^ self D: 10

Integer >> D20

^ self D: 20

We have now a compact form to create dice and we are ready for the last
part: the addition of handles.

8

1.8 Conclusion

Handle’s addition

Now we can simply support the addition of handles. But of course let’s write
a test first.

DiceHandleTest >> testSumming

| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber = 5.

We will define a method + on the HandleDice class. In other languages this
is often not possible or is based on operator overloading. In Pharo + is just a
message as any other, therefore we can define it on the classes we want.

Now we should ask ourself what is the semantics of adding two handles.
Should we modify the receiver of the expression or create a new one. We
preferred a more functional style and choose to create a third one.

The method + creates a new handle then add to it the dice of the receiver and
the one of the handle passed as argument to the message. Finally we return
it.

DiceHandle >> + aDiceHandle

| handle |
handle := self class new.
self dice do: [:each | handle addDie: each].
aDiceHandle dice do: [:each | handle addDie: each].
^ handle

Now we can execute the method (2 D20 + 1 D6) roll nicely and start
playing role playing games, of course.

1.8 Conclusion

This chapter illustrates how to create a small DSL based on the definition
of some domain classes (here Dice and DiceHandle) and the extension of
core class such Integer. It shows that in Pharo we can use usual operators to
express natural models.

9

	Crafting a Simple Embedded DSL with Pharo
	Getting started
	Defining the class Die
	Creating a test

	Rolling a die
	Creating another test

	Instance creation interface
	First specification of a dice handle
	Testing a Dice Handle
	Defining the DiceHandle class

	Improving programmer experience
	Rolling a dice handle
	Role playing syntax
	Handle's addition

	Conclusion

