
CHA P T E R 1
Developing a simple counter

To get started in Pharo, we invite you to implement a simple counter by fol-
lowing the steps given below. In this exercise you will learn how to create
packages classes, method, instances. You will learn how to define tests and
more. This simple tutorial covers most of the important actions that we do
when developing in Pharo.

Note that the development flow promoted by this little tutorial is traditional
in the sense that you will define a package, a class, then define its instance
variable then define its methods and finally execute it. The companion video
follows also such programming development flow. Now in Pharo, developers
often follows a totally different style (that we call live coding) where they ex-
ecute an expression that raises errors and they code in the debugger and
let the system define some instance variables and methods on the fly for
them. Once you will have finish this tutorial, you will feel more confident
with Pharo and we strongly suggest you to try the other style by following
the second video showing such different development practices.

1.1 Our use case

Here is our use case: We want to be able to create a counter, increment it
twice, decrement it and check that its value is correct. It looks like this little
use case will fit perfectly a unit test - you will define one later.

| counter |
counter := Counter new.
counter increment; increment.
counter decrement.
counter count = 1

1

Developing a simple counter

Figure 1.1 Package created and class creation template.

Now we will develop all the mandatory class and methods to support this
scenario.

1.2 Create your own class

In this part, you will create your first class. In Pharo, a class is defined in a
package. You will create a package then a class. The steps we will do are the
same ones every time you create a class, so memorize them well.

Create a package

Using the Browser create a package. The system will ask you a name, write
Counter. This new package is then created and added to the list. Figure 1.1
shows the result of creating such a package.

Create a class

Creating a class requires five steps. They consist basically in editing the class
definition template to specify the class you want to create.

• Superclass Specification. First, you should replace the word NameOf-
Superclass with the word Object. Thus, you specify the superclass of

2

1.3 Define protocols and methods

the class you are creating. Note that this is not always the case that
Object is the superclass, since you may to inherit behavior from a
class specializing already Object.

• Class Name. Next, you should fill in the name of your class by replac-
ing the word NameOfClass with the word Counter. Take care that the
name of the class starts with a capital letter and that you do not re-
move the #sign in front of NameOfClass. This is because the class we
want to create does not exist yet, so we have to give its name, and we
use a Symbol (a unique string in Pharo) to do so.

• Instance Variable Specification. Then, you should fill in the names
of the instance variables of this class. We need one instance variable
called count. Take care that you leave the string quotes!

• Class Variable Specification. As we do not need any class variable make
sure that the argument for the class instance variables is an empty
string classInstanceVariableNames: ''.

You should get the following class definition.

Object subclass: #Counter
instanceVariableNames: 'count'
classVariableNames: ''
package: 'MyCounter'

Now we should compile it. We now have a filled-in class definition for the
class Counter. To define it, we still have to compile it. Therefore, select the
accept menu item. The class Counter is now compiled and immediately
added to the system.

Figure 1.2 illustrates the resulting situation that the browser should show.

The tool runs automatically some code critic and some of them are just inac-
curate, so do not care for now.

As we are disciplined developers, we add a comment to Counter class by
clicking Comment button. You can write the following comment:

Counter is a simple concrete class which supports incrementing and
decrementing a counter.

Its API is
- decrement, increment
- count
Its creation API is message withValue:

Select menu item ’accept’ to store this class comment in the class.

1.3 Define protocols and methods

In this part you will use the browser to learn how to add protocols and meth-
ods.

3

Developing a simple counter

Figure 1.2 Class created.

The class we have defined has one instance variable named count. You should
remember that in Pharo, (1) everything is an object, (2) that instance vari-
ables are private to the object, and (3) that the only way to interact with an
object is by sending messages to it.

Therefore, there is no other mechanism to access the instance variable val-
ues from outside an object than sending a message to the object. What you
can do is to define messages that return the value of the instance variable.
Such methods are called accessors, and it is a common practice to always de-
fine and use them. We start to create an accessor method for our instance
variable count.

A method is usually sorted into a protocol. These protocols are just a group
of methods without any language semantics, but convey important naviga-
tion information for the reader of your class. Although protocols can have
any name, Pharo programmers follow certain conventions for naming these
protocols. If you define a method and are not sure what protocol it should be
in, first go through existing code and try to find a fitting name.

Create a method

Now let us create the accessor methods for the instance variable count. Start
by selecting the class Counter in a browser, and make sure the you are edit-

4

1.4 Define a Test Class

ing the instance side of the class (i.e., we define methods that will be sent to
instances) by deselecting the Class side radio button.

Create a new protocol by bringing the menu of methods protocol list. Select
the newly created protocol. Then in the bottom pane, the edit field displays
a method template laying out the default structure of a method. As a general
hint, double click at the end of or beginning of the text and start typing your
method. Replace the template with the following method definition:

count
"return the current value of the value instance variable"
^ count

This defines a method called count, taking no arguments, having a method
comment and returning the instance variable count. Then choose accept in
the menu to compile the method. You can now test your new method by typ-
ing and evaluating the next expression in a Playground, or any text editor.

Counter new count
> nil

This expression first creates a new instance of Counter, and then sends the
message count to it. It retrieves the current value of the counter. This should
return nil (the default value for non-initialised instance variables). After-
wards we will create instances with a reasonable default initialisation value.

Adding a setter method

Another method that is normally used besides the accessor method is a so-
called setter method. Such a method is used to change the value of an in-
stance variable from a client. For example, the expression Counter new
count: 7 first creates a new Counter instance and then sets its value to 7:

The snippets shows that the counter effectively contains its value.

| c |
c := Counter new count: 7.
c count
> 7

This setter method does not currently exist, so as an exercise write the method
count: such that, when invoked on an instance of Counter, instance vari-
able is set to the argument given to the message. Test your method by typing
and evaluating the expression above.

1.4 Define a Test Class

Writing tests is an important activity that will support the evolution of your
application. Remember that a test is written once and executed million times.

5

Developing a simple counter

For example if we have turned the expression above into a test we could have
checked automatically that our new method is correctly working.

To define a test case we will define a class that inherits from TestCase. There-
fore define a class named CounterTest as follows:

TestCase subclass: #CounterTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Counter'

Now we can write a first test by defining one method. Test methods should
start with text to be automatically executed by the TestRunner or when you
press on the icon of the method. Now to make sure that you understand in
which class we define the method we prefix the method body with the class
name and >>. CounterTest>>means that the method is defined in the class
CounterTest.

Define the following method. It first creates an instance, sets its value and
verifies that the value is correct. The message assert: is a special message
verifying if the test passed or not.

CounterTest >> testCountIsSetAndRead
| c |
c := Counter new.
c count: 7.
self assert: c count = 7

Verify that the test passes by executing either pressing the icon in front of
the method or using the TestRunner available in the Tools menus (selecting
your package). Since you have a first green test. This is a good moment to
save your work.

1.5 Saving your work

Several ways to save your work exist.

• Using plain files. You can save the class or a method by clicking on it
and selecting the fileout menu item. You will get a file containing the
source code on your hard-disc - This is not the favorite way to save
your code.

• Using a version control system. It is better to use a version control sys-
tem. In Pharo you can use Monticello and Git (even if it is more for ad-
vanced users).

In this tutorial we explain the simplest way to get you done. Note that the
complete set of Pharo packages is managed via Monticello (which is a dis-
tributed versioning control system - there is are chapters in Pharo by Exam-
ple and Deep into Pharo books http://books.pharo.org).

6

http://books.pharo.org

Figure 1.3 Selecting a new kind of repository to the list of possible places to com-

mit the package.

Figure 1.4 Editing the repository information.

7

Developing a simple counter

Use theMonticello Browser (available in Tools) to save your work. You can
save a package locally on your harddisc or on a remote server on the web
such http://www.smalltalkhub.com

Saving using Monticello

Using Monticello you can save your work:

• Locally. You can store your packages in a folder on your disc (use direc-
tory as a kind of repository).

• Remotely. Using an account on a free server such http://www.smalltalkhub.

com/. You can save your work and share it with others.

Note each time you load or save a package, this package is also be stored on
the folder named ’package-cache’ on your hard-disc.

Add a repository.

Go to http://www.smalltalkhub.com/ and create a member account then regis-
ter a new project. You get an HTTP entry that refers to your project. Define
a new HTTP repository using the Monticello Browser as shown by Figures 1.3
and 1.4.

Figure 1.3 shows that you package is dirty: this is indicated with the little ’*’
in front of the packages.

Example. We are saving our examples into a special team named PharoMooc
in the the Counter project so the template is the following one

MCHttpRepository
location: 'http://smalltalkhub.com/mc/PharoMooc/Counter/main'
user: ''
password: ''

So the template is the following:

MCHttpRepository
location:

'http://smalltalkhub.com/mc/YourAccountOrTeamAccount/YourProject/main'
user: 'YourAccountID'
password: 'YourAccountPassword'

Saving your package.

To save your work, simply select your package and the repository you want
to save it to and save it using the Save button. This will open a dialog where
you can give a comment, version numbers and blessing. From then on, other
people can load it from there, in the same way that you would use cvs or
other multi-user versioning systems. Saving the image is also a way to save

8

http://www.smalltalkhub.com
http://www.smalltalkhub.com/
http://www.smalltalkhub.com/
http://www.smalltalkhub.com/

1.6 Adding more messages

your working environment, but not a way to version and publish it in a way
that can be easily shared.

You can of course both publish your package (so that other people can load
it, and that you can compare it with other versions, etc.) and save your im-
age (so that next time that you start your image you are in the same working
environment).

1.6 Adding more messages

Before implementing the following messages we define first a test. We define
one test for the method increment as follows:

CounterTest >> testIncrement
| c |
c := Counter new.
c count: 0 ; increment; increment.
self assert: c count = 2

• Propose a definition for the method increment.

• Define a test and method for the method decrement.

• Implement the following methods increment and decrement in the
protocol ’operation’.

• Implement also a new test method for the method decrement

Counter >> increment
self count: self count + 1

Counter >> decrement
self count: self count - 1

Run your tests they should pass (as shown in Figure 1.5). Again this is a good
moment to save your work. Saving at point where tests are green is always a
good process.

1.7 Better object description

When you open an inspect (putting a self halt inside a method definition)
you obtain an inspector or when you select the expression Counter new and
print its result (using the Print it menu of the editor) you obtain a simple
string 'a Counter'.

Counter new
> a Counter

We would like to get a much richer information for example knowing the
counter value. Implement the following methods in the protocol printing

9

Developing a simple counter

Figure 1.5 Class with green tests.

Figure 1.6 Better description.

Counter >> printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' with value: ', self count printString.

Note that the method printOn: is used when you print an object using print
it (See Figure 1.6) or click on self in an inspector.

1.8 Instance initialization method

Right now the initial value of our counter is not set as the following expres-
sion shows it.

10

1.9 Define a new instance creation method

Counter new count
> nil

Let us write a test checking that a newly created instance has 0 as a default
value.

CounterTest >> testValueAtCreationTimeIsZero
self assert: Counter new count = 0

If you run it, it will turn yellow indicating a failure (a situation that you an-
ticipated but that is not correct) - by opposition to an error which is an antic-
ipated situation leading to failed assertion.

Define an initialize method

Now we have to write an initialization method that sets a default value of the
count instance variable. However, as we mentioned the initializemes-
sage is sent to the newly created instance. This means that the initialize
method should be defined at the instance side as any method that is sent to
an instance of Counter (like increment) and decrement. The initialize
method is responsible to set up the instance variable default values.

Therefore at the instance side, you should create a protocol initializa-
tion, and create the following method (the body of this method is left blank.
Fill it in!).

Counter >> initialize
"set the initial value of the value to 0"

Now create a new instance of class Counter. Is it initialized by default? The
following code should now work without problem:

Counter new increment

and the following one should return 2

Counter new increment; increment; count
> 2

Again save your work before starting the next step.

1.9 Define a new instance creation method

We would like to show you the difference between an instance method (i.e.
sent to instances) and a class method (i.e. to a class). In fact the only differ-
ence is the place to define them. An instance method is defined in the in-
stance side of Code Browser while class methods are defined on the class side
(Pressing the button Class).

11

Developing a simple counter

Define a different instance creation method named withValue:. This method
receives an integer as argument and returns an instance of Counter with the
specified value.

Let us define a test:

CounterTest >> testAlternateCreationMethod
self assert: ((Counter withValue: 19) increment ; count) = 20

Here the message withValue: is sent to the class Counter itself.

Your implementation should look like

Counter class >> withValue: anInteger
| c |
c := self new count: anInteger.
^ c

Note that self in such method refers to the class Counter itself.

1.10 Conclusion

In this tutorial you learned how to define packages, classes, methods, and
define tests. The flow of programming that we chose for this first tutorial is
similar to most of programming languages. In Pharo you can use a different
flow that is based on defining a test first, executing it and when the execu-
tion raises error to define the corresponding classes, methods, and instance
variable often from inside the debugger. We suggest you now to redo the ex-
ercise following the second companion video.

12

	Developing a simple counter
	Our use case
	Create your own class
	Create a package
	Create a class

	Define protocols and methods
	Create a method
	Adding a setter method

	Define a Test Class
	Saving your work
	Saving using Monticello
	Add a repository.
	Saving your package.

	Adding more messages
	Better object description
	Instance initialization method
	Define an initialize method

	Define a new instance creation method
	Conclusion

