
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Pharo: a Live Programming Environment
Pharo comes with an integrated development environment.
Pharo is a live programming environment: you can modify your
objects and your code while your program is executing. All
Pharo tools are implemented in Pharo:
• a code browser with refactorings;
• a debugger, a workspace, and inspectors;
• the compiler itself and much, much more.
Code can be inspected and evaluated directly in the image,
using simple key combinations and menus (open the contextual
menu on any selected text to see available options).

The 5 Panes Pharo Code Browser

Packages Classes Protocols
Methods

Code pane

• The packages pane shows all the packages of the system.
• The classes pane shows the class hierarchy of the selected
package; the class side checkbox allows for getting the meth-
ods of the metaclass.

• The protocols pane groups the methods of the selected class
to ease navigation. When a protocol name starts with a *,
methods of this protocol belong to a different package (e.g.,
the *Fuel protocol groups methods that belong to the Fuel
package);

• Themethods pane lists themethods of the selected protocol;
icons are clickable and trigger special actions;

• The source code pane shows the source code of the selected
method.

Defining a class
To add a class or edit a class, edit the proposed template!
The following expression defines the class Counter as a sub-
class of Object. It defines two instance variables count and
initialValue inside the package MyCounter.

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Object subclass: #Counter
instanceVariableNames: ’count initialValue’
classVariableNames: ’’
package: ’MyCounter’

The method initialize is automatically invoked when a new
instance is created by sending the message new to the class i.e.,
Counter new.

Counter >> initialize
super initialize.
count := 0.

Counter >> initialize is a notation to indicate that the
following text is the content of the method initialize in the
class Counter.
Methods
Methods are public and virtual. They are always looked up in the
class of the receiver. By default a method returns self. Class
methods follow the same dynamic lookup as instance methods.
Method factorial defined in class Integer.

Integer >> factorial
"Answer the factorial of the receiver."
self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].

Unit testing
A test must be implemented in a method whose name starts
with test and in a class that inherits from TestCase.

OrderedCollectionTest >> testAdd
| added |
added := collection add: ’foo’.
self assert: (collection includes: ’foo’).

The second line declares the variable added. The message
assert: expects a true value.

A simple, uniform and powerful model
Pharo has a simple dynamically-typed object model:
• everything is an object— instance of a class;
• classes are objects too and there is single inheritance be-
tween classes;

• traits are groups of methods that can be reused orthogo-
nally to inheritance;

• instance variables are protected; methods are public and
virtual; and blocks are lexical closures.

Less is more: No type declarations, no primitive objects, no
generic types, no modifiers, no operators, no inner classes, no
constructors, and no static methods. They are not needed!

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

An innovative, open-source Smalltalk-inspired
language and system for live programming

http://www.pharo.org
Pharo is both an object-oriented, dynamically-typed general-
purpose language and its own programming environment. The
language has a simple and expressive syntax which can be
learned in a few minutes. Concepts in Pharo are very consistent:
• Everything is an object: buttons, colors, arrays, numbers,
classes, methods. . . Everything!

• A small number of rules, no exceptions!

Main Web Sites
Code hosting http://smalltalkhub.com
Questions https://pharoproject.slack.com/
Blog http://pharoweekly.wordpress.com
Contributors http://pharo.org/about
Topics http://topics.pharo.org
Consortium http://consortium.pharo.org
Association http://association.pharo.org
PharoBooks
Pharo books are available at: http://books.pharo.org
Pharo By Example, Deep into Pharo, Enterprise Pharo: a Web
Perspective, Numerical Methods in Pharo, TinyBlog Tutorial,
Dynamic Web Development in Seaside (http://book.seaside.st)
More books http://stephane.ducasse.free.fr/FreeBooks
Minimal Syntax

Six reserved words only
nil the undefined object

true,false the boolean objects
self the receiver of the current message

super the receiver but for accessing overridden
methods

thisContext the current method or block activation

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Minimal Syntax (II)

Object constructors & reserved syntactic constructs
"comment"

’string’ collection of characters
#symbol unique string

$a, Character space Two ways to create characters
12 2r1100 16rC twelve (decimal, binary, hexa)

3.14 1.2e3 floating-point numbers
#(abc 123) literal array with the symbol

#abc and the number 123
{foo . 3 + 2} dynamic array built from 2 ex-

pressions
#[123 21 255] byte array

| foo bar | declaration of two temporary
variables

var := expr assignment
exp1. exp2 period - expression separator

; semicolon - message cascade
[:p | expr] code block with a parameter

<unary> method annotation
<key:’any’ wrd:#lit > with any literal arguments

^ expr caret - returns a result from a
method

Message Sending
When we send a message to an object (the receiver), the cor-
responding method is selected and executed, and the method
answers an object. Message syntax mimics natural languages,
with a subject, a verb, and complements.
Pharo Java
aColor r: 0.2 g: 0.3 b: 0 aColor.setRGB(0.2,0.3,0)
d at: ’1’ put: ’Chocolate’. d.put("1", "Chocolate");

Three Types of Messages: Unary, Binary, and Keyword
A unary message is one with no arguments.
Array new. anArray
#(4 2 1) size. 3
new is an unary message sent to classes (classes are objects).
A binary message takes only one argument and is named by
one or more symbol characters from +, -, *, =, <, >, ...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

3 + 4 7
’Hello’ , ’World’ ’Hello World’
The + message is sent to the object 3 with 4 as argument.
The string ’Hello’ receives the message , (comma) with
’ World’ as the argument.
A keyword message can take one or more arguments that are
inserted in the message name.
’Pharo’ allButFirst: 2. ’aro’
[:x | x + 2] value: 7 9
3 to: 10 by: 2. (3 to: 10 by: 2)
The second line executes a block. The third example sends
to:by: to 3, with arguments 10 and 2; this returns an interval
containing 3, 5, 7, and 9.
Message Precedence
Parentheses>unary>binary> keyword, and finally from left
to right.

(10 between: 1 and: 2 + 4 * 3) not

Messages + and * are sent first, then between:and: is sent,
and then not. The rule suffers no exception: operators are
just binary messages with no notion of mathematical precedence.
2 + 4 * 3 reads left-to-right and gives 18, not 14!
Cascade: Sending Muliple Messages to the Same Object
Using ; (a cascade) multiple messages are sent to the result of
the same expression. Here ; arrives after add: 1, so messages
add: 2 and add: 3 are sent to add: 1’s receiver: a collection.

OrderedCollection new
add: 1;
add: 2;
add: 3.

The whole message cascade value is the value of the last mes-
sage sent (the symbol #g). To return the receiver of themessage
cascade instead (i.e., the collection), send yourself as the last
message of the cascade.
Blocks
Blocks are objects containing code that is executed on demand.
They are the basis for control structures: conditionals & loops.

2 = 2
ifTrue: [Error signal: ’Help’].

Send the message ifTrue: to the boolean true (computed
from 2 = 2) with a block as argument. Because the boolean is

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

true, the block is executed and an exception is signaled.
#(’Hello World’ $!)

do: [:e | Transcript show: e]

Send the message do: to an array. This executes the block
once for each element, passing it via the e parameter. As a
result, Hello World! is printed.

Common Constructs
Conditionals

condition if (condition)
ifTrue: [action] { action(); }
ifFalse: [anotherAction] else { anotherAction(); }
[condition] whileTrue: while (condition) { action();
[action. anotherAction] anotherAction(); }

Loops/Iterators
1 to: 11 do: [:i | for(int i=1; i<11; i++){
Transcript show: i ; cr] System.out.println(i); }

| names | String [] names ={"A", "B", "C"};
names := #(’A’ ’B’ ’C’). for(String name : names) {
names do: [:each | System.out.print(name);
Transcript show: each, ’ , ’] System.out.print(","); }
Collections start at 1. aCol at:i accesses element at i and
aCol at:i put:value sets element at i to value.

Collections
#(4 2 1) at: 3 1
#(4 2 1) copy at: 3 put: 6 #(4 2 6)
{4 . 2 . 1} at: 3 put: 6 #(4 2 6)
(Array new: 2) add: 4; add: 2 ; yourself #(4 2)
Set new add: 4; add: 4 ; yourself aSet
Dictionary new
at: #a put: ’Alpha’ ; yourself aDictionary

Files and Streams
work := FileSystem disk workingDirectory.
stream := (work / ’foo.txt’) writeStream.
stream nextPutAll: ’Hello World’.
stream close.
stream := (work / ’foo.txt’) readStream.
stream contents. ’Hello World’
stream close.

