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Goals

Little motivation

Power of reification of actions

Command Design Pattern

Glimpse at Commander: a command framework
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Imagine a scriptable robot

testExecute
[rbb|
rb := RbsRobot new.
rb startLocation: 4@1.
rb execute:

'dir #east

mov 2

mov 3

dir #north

mov 3.
self assert: rb position equals: 9@4
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Execute (first version)

A\\ 2

RbsRobot >> execute: aString

orders := aString splitOn: Character cr.
orders := orders collect: [ :each | each splitOn: Character space ].
orders do: [ :each |
each first = 'mov'
ifTrue: [ self move: (Object readFrom: each second) ]
ifFalse: [ each first ="'dir'
ifTrue: [ self direction: (Object readFrom: each second) ]] ]
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Execute (more actions)

RbsRobot >> execute: aString

orders := aString splitOn: Character cr.
orders := orders collect: [ :each | each splitOn: Character space ].
orders do: [ :each |
each first ="'mov'
ifTrue: [ self move: (Object readFrom: each second) ]
ifFalse: [ each first = 'dir'
ifTrue: [ self direction: (Object readFrom: each second) ]
ifFalse: [ each first ="'drop']]

;ach first ="pick’

each first ="return’' ]

A\\ 2
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Analysis

e Each time we add a new order we have to modify execute:
e Imagine if a mov order cost a lot

o Better to have one over many ones
o mov 10 mov 10 mov 10 -> mov 30
o Not simple to perform a simple path optimization

e How to replay the exact low-level executions
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Command Design Pattern

Intent from the book: Encapsulate a request or operation as an object, thereby
letting you parametrize clients with different operations, queue or log request, and
support undoable operations
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A command

e A command is a reification of an order/action

e A command encapsulates an action and optionally its context
© menu item
o log action

e Commands are often the basis for Undo
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Robot direction command

RbsCommand << #RbsDirectionCommand
slots: { #direction };
tag: 'Commands';
package: 'Robots'

RbsDirectionCommand << handleArguments: aCollection
direction := aCollection first asSymbol

RbsDirectionCommand << executeOn: aRobot
aRobot direction: direction
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Robot move command

RbsCommand << #RbsMoveCommand
slots: { #distance };
tag: 'Commands';
package: 'Robots'

RbsMoveCommand << handleArguments: aCollection
direction := Object readFrom: aCollection first

RbsMoveCommand << executeOn: aRobot
aRobot move: distance
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Modular execution logic

RbsRobot >> executeCommandBased: aString

orders := aString splitOn: Character cr.
orders := orders collect: [ :each | each splitOn: Character space ].
orders do: [ :each |
(self commandClassFor: each first) new
handleArguments: each allButFirst;
executeOn: self ]
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Analysis of extensibility in place

executeOn:
handleArguments:

RbsRobot
]

Move
Command
executeOn:
handleArguments:

Direction
Command
executeOn:
handleArguments:

Drop
Command
executeOn:
handleArguments:

e Each command is responsible for handling its own data
e Each command encapsulates its state, applicability and action
e Can now manipulate actions (log, sort, undo....)
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Command cons

e Not all operations should be turned into Command objects
e Produce large hierarchies of simple classes
e Pay attention not to externalize key object behavior

o a class should still be complete
o better if a command represents an existing behavior
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Commander: a Command framework

x -0 Untitled window - ‘
Name Phone

Stef 112378 ‘
Pavel

Commander is a little framework for commands using decorators

e Can produce a toolbar or menus
e Ul is optional

(EgAddContactCommand new context: aPresenter) execute

%
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Core commander

CmAbstractCommand
execute
context decorated
canBeExecuted <
acceptVisitor:
forContext:
CmBlock CmCommand CmCommandDecorator
Command name name
name description description
description decorateWith: context
block: decoratedCommand
canBeExecutedBlock:

CmUICommand

icon

shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide
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Add Contact

EgContactBookCommand << #EgAddContactCommand
package: 'EgContactBook’

CmAddContactCommand >> initialize
super initialize.
self
basicName: 'New contact';
basicDescription: 'Creates a new contact and add it to the contact
book.'
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Add Contact: Behavior

CmAddContactCommand >> execute
| contact |
contact := self contactBookPresenter newContact.
self hasSelectedContact
ifTrue: [ self contactBook
addContact: contact
after: self selectedContact ]
ifFalse: [ self contactBook addContact: contact ].
self contactBookPresenter updateView
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Commander and its decorators

3
Z

M5S3

19/ 23

CmAbstractCommand decorated
execute
context
canBeExecuted
acceptVisitor:
forContext:
CmBlock CmCommand CmCommandDecorator
Command name name
name description description
description decorateWith: context
block: asSpecCommand decoratedCommand
canBeExecutedBlock:

CmUICommand

icon
shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide
StCommand
Sp ec asSpecCommand SpCommand
Usage £xecule asButtonPresenter

| StPlaygroundDoltCommand

| execute

Core

ul

Spec



Commander and its decorators

CmCommand >> asSpecCommand
"Subclasses might override this method to define default icon and shortcut."
A self decorateWith: SpCommand

StCommand >> asSpecCommand

| command |
command := super asSpecCommand
iconProvider: self application;
iconName: self class defaultlconName;
yourself.
self class defaultShortcut
ifNotNil: [ :keyCombination | command shortcutKey: keyCombination ].
A command
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One Command

StCommand << StPlaygroundDoltCommand
package: 'NewTools—Playground'

StCommand >> execute
context doEvaluateAllAndGo
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Conclusion

e Commands are first class actions
e Adapted for manipulation of actions (undo, replay)
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