Advanced Object-Oriented Design

Command Design Pattern

Actions as objects

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Phar®

http://www.pharo.org

x ifTrue:
A self

[—

http://www.pharo.org

Goals

Little motivation

Power of reification of actions

Command Design Pattern

Glimpse at Commander: a command framework

»” M5S3 2/23

Imagine a scriptable robot

testExecute
[rbb|
rb := RbsRobot new.
rb startLocation: 4@1.
rb execute:

'dir #east

mov 2

mov 3

dir #north

mov 3.
self assert: rb position equals: 9@4

2
» M5S3 3/23

Execute (first version)

A\\ 2

RbsRobot >> execute: aString

orders := aString splitOn: Character cr.
orders := orders collect: [:each | each splitOn: Character space].
orders do: [:each |
each first = 'mov'
ifTrue: [self move: (Object readFrom: each second)]
ifFalse: [each first ="'dir'
ifTrue: [self direction: (Object readFrom: each second)]]]

M5S3 4 /23

Execute (more actions)

RbsRobot >> execute: aString

orders := aString splitOn: Character cr.
orders := orders collect: [:each | each splitOn: Character space].
orders do: [:each |
each first ="'mov'
ifTrue: [self move: (Object readFrom: each second)]
ifFalse: [each first = 'dir'
ifTrue: [self direction: (Object readFrom: each second)]
ifFalse: [each first ="'drop']]

;ach first ="pick’

each first ="return’']

A\\ 2

M5S3 5/23

Analysis

e Each time we add a new order we have to modify execute:
e Imagine if a mov order cost a lot

o Better to have one over many ones
o mov 10 mov 10 mov 10 -> mov 30
o Not simple to perform a simple path optimization

e How to replay the exact low-level executions

2
» M5S3 6/23

Command Design Pattern

Intent from the book: Encapsulate a request or operation as an object, thereby
letting you parametrize clients with different operations, queue or log request, and
support undoable operations

» M5S3 7/23

A command

e A command is a reification of an order/action

e A command encapsulates an action and optionally its context
© menu item
o log action

e Commands are often the basis for Undo

2
» M5S3 8/23

A\

Invoker

Receiver

Command
P1 execute
Concrete Concrete
Command Command?2
execute execute

Robot direction command

RbsCommand << #RbsDirectionCommand
slots: { #direction };
tag: 'Commands';
package: 'Robots'

RbsDirectionCommand << handleArguments: aCollection
direction := aCollection first asSymbol

RbsDirectionCommand << executeOn: aRobot
aRobot direction: direction

Z5s3 10/ 23

Robot move command

RbsCommand << #RbsMoveCommand
slots: { #distance };
tag: 'Commands';
package: 'Robots'

RbsMoveCommand << handleArguments: aCollection
direction := Object readFrom: aCollection first

RbsMoveCommand << executeOn: aRobot
aRobot move: distance

2
» M5S3 11/23

Modular execution logic

RbsRobot >> executeCommandBased: aString

orders := aString splitOn: Character cr.
orders := orders collect: [:each | each splitOn: Character space].
orders do: [:each |
(self commandClassFor: each first) new
handleArguments: each allButFirst;
executeOn: self]

Z05s3 12/ 23

Analysis of extensibility in place

executeOn:
handleArguments:

RbsRobot
]

Move
Command
executeOn:
handleArguments:

Direction
Command
executeOn:
handleArguments:

Drop
Command
executeOn:
handleArguments:

e Each command is responsible for handling its own data
e Each command encapsulates its state, applicability and action
e Can now manipulate actions (log, sort, undo....)

» M5S3 13/23

Pick
Command
executeOn:
handleArguments:

Command cons

e Not all operations should be turned into Command objects
e Produce large hierarchies of simple classes
e Pay attention not to externalize key object behavior

o a class should still be complete
o better if a command represents an existing behavior

2
» M5S3 14/23

Commander: a Command framework

x -0 Untitled window - ‘
Name Phone

Stef 112378 ‘
Pavel

Commander is a little framework for commands using decorators

e Can produce a toolbar or menus
e Ul is optional

(EgAddContactCommand new context: aPresenter) execute

%
» M5S3 15/23

Core commander

CmAbstractCommand
execute
context decorated
canBeExecuted <
acceptVisitor:
forContext:
CmBlock CmCommand CmCommandDecorator
Command name name
name description description
description decorateWith: context
block: decoratedCommand
canBeExecutedBlock:

CmUICommand

icon

shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide

2
» M5S3 16/23

Add Contact

EgContactBookCommand << #EgAddContactCommand
package: 'EgContactBook’

CmAddContactCommand >> initialize
super initialize.
self
basicName: 'New contact';
basicDescription: 'Creates a new contact and add it to the contact
book.'

2
» M5S3 17/23

Add Contact: Behavior

CmAddContactCommand >> execute
| contact |
contact := self contactBookPresenter newContact.
self hasSelectedContact
ifTrue: [self contactBook
addContact: contact
after: self selectedContact]
ifFalse: [self contactBook addContact: contact].
self contactBookPresenter updateView

2
» M5S3 18/23

Commander and its decorators

3
Z

M5S3

19/ 23

CmAbstractCommand decorated
execute
context
canBeExecuted
acceptVisitor:
forContext:
CmBlock CmCommand CmCommandDecorator
Command name name
name description description
description decorateWith: context
block: asSpecCommand decoratedCommand
canBeExecutedBlock:

CmUICommand

icon
shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide
StCommand
Sp ec asSpecCommand SpCommand
Usage £xecule asButtonPresenter

| StPlaygroundDoltCommand

| execute

Core

ul

Spec

Commander and its decorators

CmCommand >> asSpecCommand
"Subclasses might override this method to define default icon and shortcut."
A self decorateWith: SpCommand

StCommand >> asSpecCommand

| command |
command := super asSpecCommand
iconProvider: self application;
iconName: self class defaultlconName;
yourself.
self class defaultShortcut
ifNotNil: [:keyCombination | command shortcutKey: keyCombination].
A command

Z5s3 20/ 23

One Command

StCommand << StPlaygroundDoltCommand
package: 'NewTools—Playground'

StCommand >> execute
context doEvaluateAllAndGo

Z5s3 21/ 23

Conclusion

e Commands are first class actions
e Adapted for manipulation of actions (undo, replay)

%
» M5S3 22/23

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

4
h s Inria VY
cea— LearningLab ook i g
©l0c0
BY NC ND

IMT-Université de Lille
Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

